

www.mixforchange.eu

Life MixForChange project: management for climate change adaptation of mixed Mediterranean sub-humid forests

Jaime Coello - jaime.coello@ctfc.es

Forest Science and Technology Center of Catalonia (CTFC)

Centre de la Propietat Forestal

Diputació Barcelona

- 1. Principles of (Mediterranean) adaptive silviculture
- 2. Introduction to LIFE MixForChange project
- 3. LIFE MixForChange silviculture

1.1. Main aims

Increase the <u>resistance</u> and the <u>resilience</u> of forest ecosystems to disturbances (drought, fire, pests and diseases)

Resistance: capacity to maintain its integrity (low vulnerability)

Resilience: capacity to recover to the pre-disturbance state

How can we increase resistance & resilience?

1.1. Main aims1.2. Silviculture and density

1.1. Main aims1.2. Silviculture and density

What about this?

forChange

1.1. Main aims

1.2. Silviculture and density

Intermediate density:

- Forest microclimate: dark and wet
- High individual vigour

for Change

- 1.1. Main aims
- 1.2. Silviculture and density
- 1.3. Silviculture and species composition

What is more resistant + resilient to drought, fire, pests?

- 1.1. Main aims
- 1.2. Silviculture and density
- 1.3. Silviculture and species composition

Mixed forests:

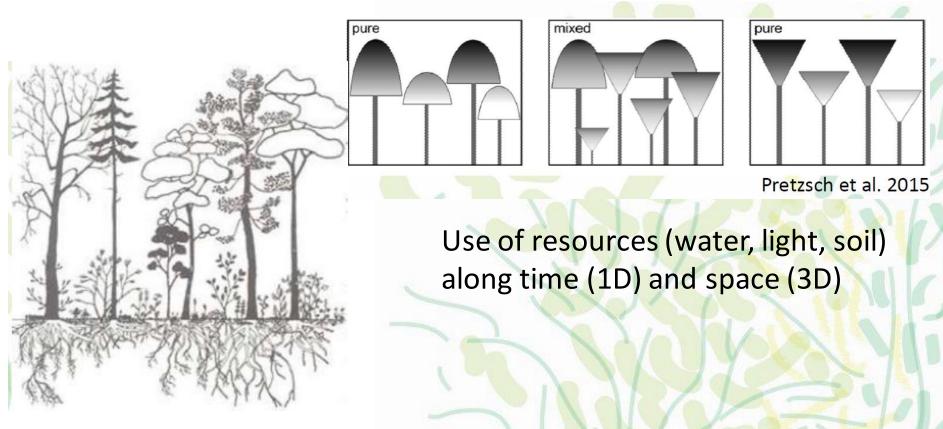
At least 2 species providing 20% or more of total basal area

Complex systems:

<u>Mixture spatial scale</u>: tree by trees? Small groups? Large groups? Stands / properties? Landscape? Micro-sites?

Time scale: static or dynamic mixture? Incipient / juvenile / adult stage?

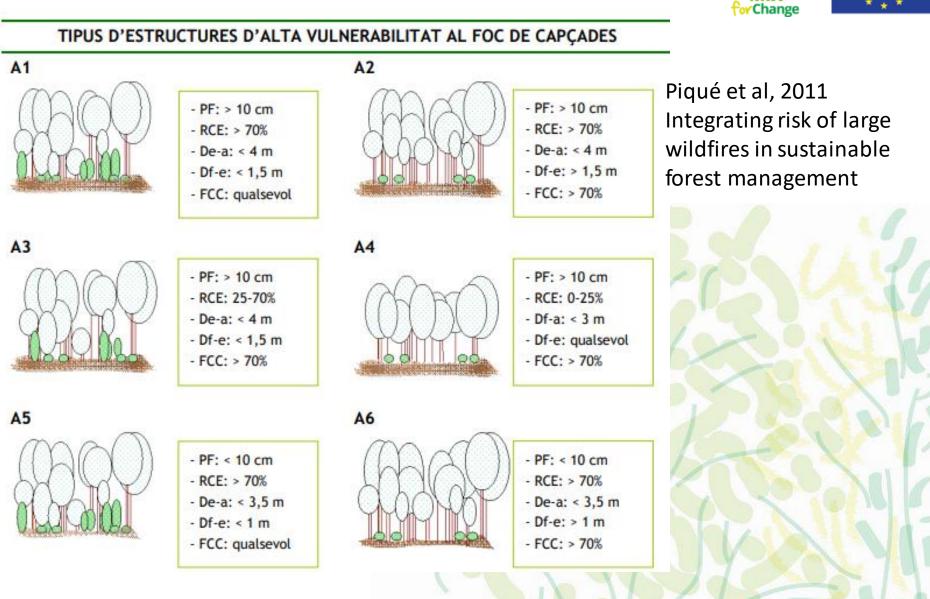
<u>Species involved</u>: number of species? Functional diversity? Light demands? Root pattern? Crown shape and density? Growth rate? Age? Longevity?


Very difficult to understand, model, manage

For Change

- 1.1. Main aims
- 1.2. Silviculture and density
- 1.3. Silviculture and species composition

Mixed forests and complementarity


- 1.1. Main aims
- 1.2. Silviculture and density
- 1.3. Silviculture and species composition
- 1.4. Silviculture and disturbances

Mediterranean context: drought and fire

Drought: intermediate density, promote vigorous trees (healthy, dominant, seed origin)

<u>Fires</u>: break vertical fuel continuity

- 1.1. Main aims
- 1.2. Silviculture and density
- 1.3. Silviculture and species composition
- 1.4. Silviculture and disturbances
- 1.5. Conclusions: how to implement Med adaptive silviculture?
 - Promote the most healthy and vigorous trees
 - Density regulation: avoid too high and too low
 - Mixed forests: more diversity \rightarrow more resilience
 - Break vertical fuel continuity

...not forgetting that silviculture requires ecologic + economic sustainability

Project origin

Very simplified stands in Mediterranean sub-humid conditions

Common problems of these forests

- <u>Vulnerable</u>to drought, fire
- Abandonment \rightarrow excessive density, low stability and vitality
- Low added-value products
- Periurban forests: high social demands: soil, water, biodiversity..

Presence of (spontaneous + scattered) valuable broadleaves: an opportunity!

Project objectives

Main aim: to contribute to the <u>adaptation and enhanced resilience to climate change</u> of <u>mixed Mediterranean sub-humid forests in Europe</u>, promoting their conservation state and the maintenance of their productive, ecological and social functions.

- 1. Developing, implementing and demonstrating innovative adaptive silviculture
- 2. Developing new tools for integrating forest CC adaptation in the policy framework.
- 3. Develop new tools to <u>strengthen forest management economics</u> to foster its economic sustainability in the mid and long term and to prevent forest abandonment
- 4. <u>Transfer</u> the techniques and tools to the main regional and European stakeholders

Timespan: 10/2016 to 09/2021

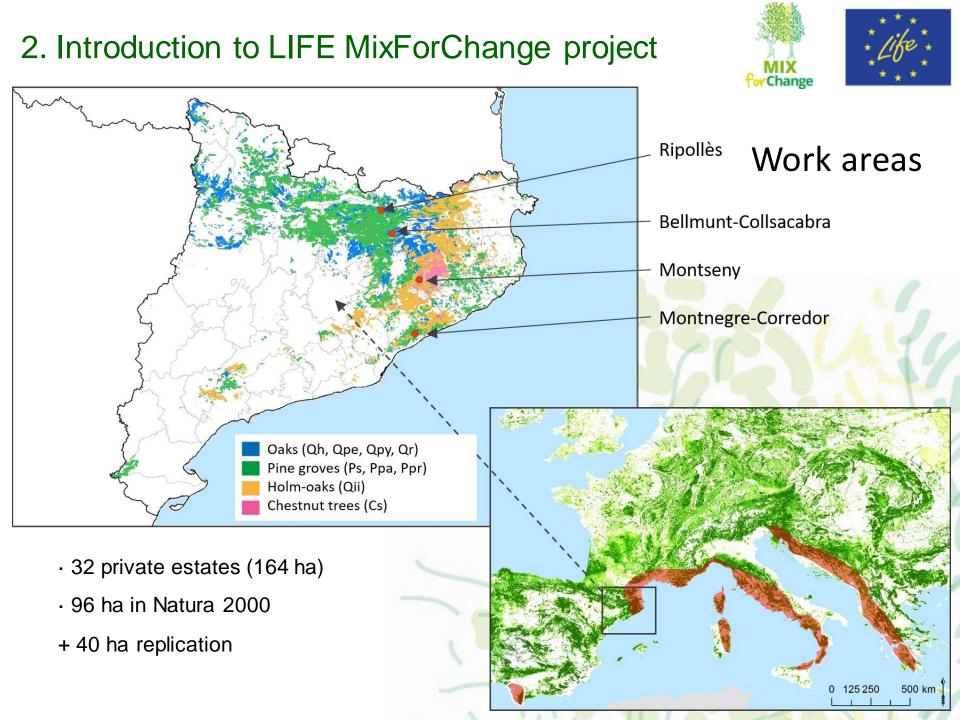
Project partners:

Centre de la Propieta Forestal

Diputació Barcelona Developing, implementing and demonstrating innovative adaptive silviculture

Adaptive silviculture (main threats: drought, fires):

+ biodiversity conservation standards


+ economically sustainable

Resulting silviculture:

Irregular or semi-regular management, constant regeneration (Continuous Cover System)

Reference: ORGEST models for mixed stands (integrating fire risk vulnerability)

- Conservation and promotion of mixed stands and diversified structures
- Close-to-nature silviculture
- Single-tree silviculture

- Adaptive silviculture

- Close to nature silviculture
- Single tree silviculture

Promote the most healthy and vigorous trees Selective thinnings

Density regulation: avoid too high and too low Selective thinning intensity: 25-30% BA

Mixed forests: more diversity \rightarrow more resilience

Keep all the present species; promote least abundant ones Enrichment planting

Break vertical fuel continuity Selective clearing of shrubs taller than 1.3 m

- Adaptive silviculture
- Close to nature silviculture
- Single tree silviculture

Take benefit of natural processes favorable to management aims:

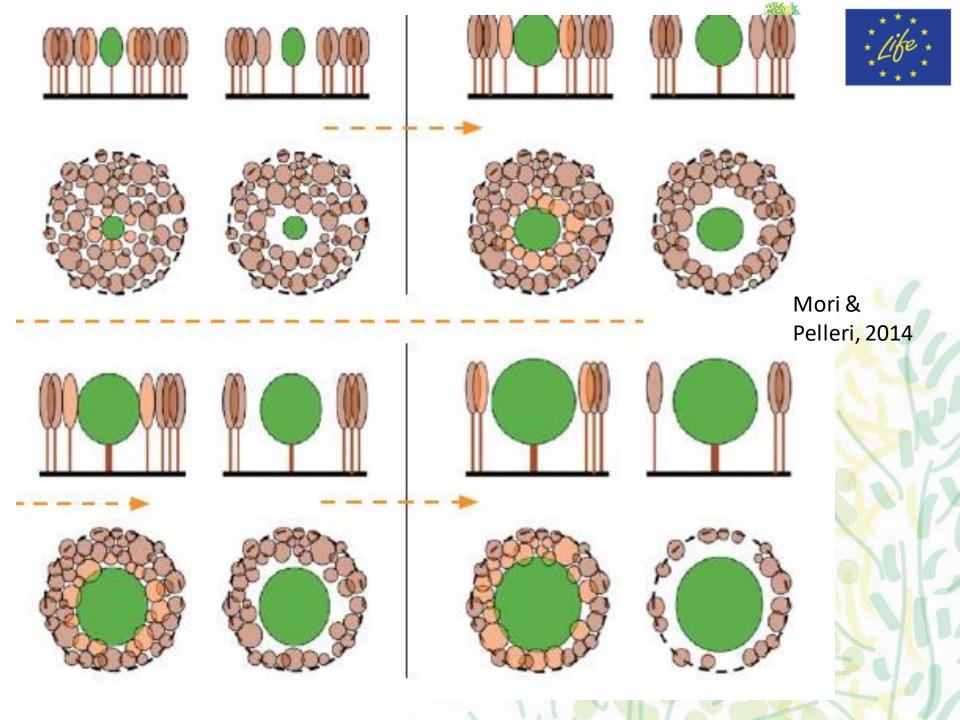
- Forest microclimate \rightarrow less shrub development, more self-pruning
- Juvenile stages with high competence: not intervention
- Shred and leave cut debris on the ground (moisture + soil shading)
- Leave standing some dead trees (when not dangerous to workers)

<u>Detailed silviculture</u>: application based on micro-site conditions Tree marking by skilled staff

- Adaptive silviculture
- Close to nature silviculture
- Single tree silviculture

Identification of most valuable trees in terms of...

- adaptation: keep all species, vigorous seed trees
- conservation: scarce species, trees with microhabitats or special features
- economics: valuable timber species, good shape, potential for high price



- Adaptive silviculture
- Close to nature silviculture
- Single tree silviculture

Identification of most valuable trees in terms of ...

- adaptation: keep all species, vigorous seed trees
- conservation: scarce species, trees with microhabitats or special features
- economics: valuable timber species, good shape, potential for high price

...and promoting them with selective thinning (1-2 competitors)

MixForChange silviculture

Irregular or semi-regular management, constant regeneration (Continuous Cover System)

> **Reference: ORGEST** models for mixed stands (integrating fire risk vulnerability)

Close-to-nature management criteria

Single-tree oriented silviculture

Treatments (diversification, competence reduction)

Depending on stand type and structure: selective and/or mixed thinning OR coppice with standards, always considering criteria of tree-oriented silviculture

Partial + selective shrub clearing

Future crop tree selection (150 trees/ha)

Tree cutting criteria

1st: Competitors <u>at crown level</u> of future crop trees

2nd: General regulation of competence (selective or mixed thinning), to reach the parameters defined at stand level

Most common thinning intensity: 25-30% BA

Releasing adult future crop trees, regulating competence at the dominant and co-dominant strata

Releasing future crop trees of young broadleaves (DBH>7.5 cm): identification of competitors at crown level

Example: interventions in chestnut stands (Castanea sativa)

Mixed or selective thinning, coppice with standards:

- Chestnut, *Quercus sp*: cut 50% shoots + dead shoots
- Erica sp, Arbutus unedo, Viburnum sp: 1-2 shoots/stump left (0 if dead/malformed)
- Hazelnut stumps: cutting peripheral shoots

Release future crop trees: Prunus avium, Quercus sp.

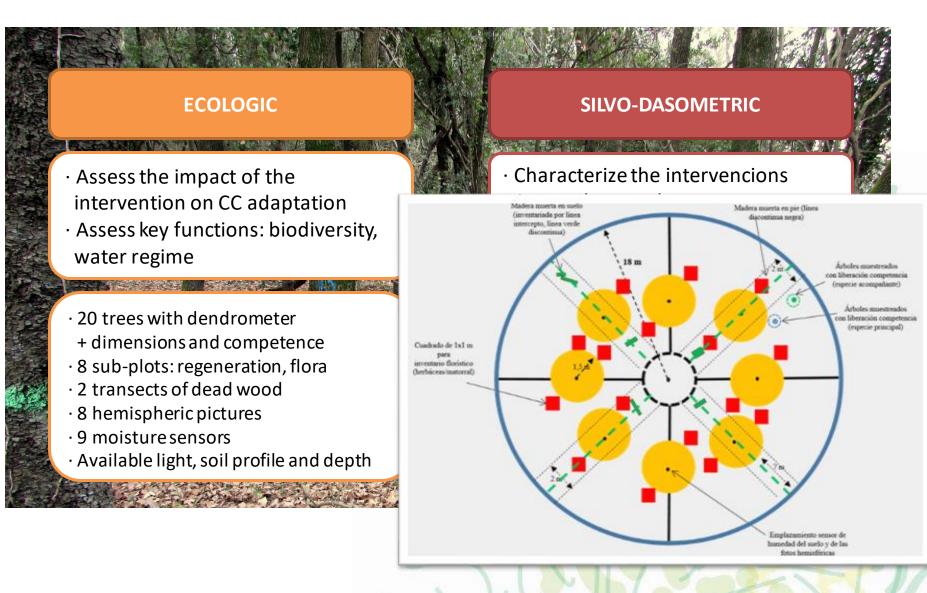
Sorbus sp., Fraxinus sp, Acer sp

1 – 2 competitors cut

Selective shrub clearing

Dasometric figures:

Ni = 1350 trees/ha Cut: ≈540 trees/ha BAi = 29 m²/ha ≈-24% BA(7 m²/ha) ≈ 100-150 future crop trees/ha (oak, cherry...)



Interventions monitoring

Interventions monitoring



For Change

Interventions monitoring

Study area	Stand	Area (ha)	ECO	DASO
	C1.1	7,22	1+1	3
Montnegre - Corredor	C1.2	11,28	-	5
	C1.3	1,32	-	1
	C1.4	2,42	-	2
	C1.5	2,00	-	2
Montseny	C1.6	6,50	1+1	3
	C2.1	1,37	-	1
	C2.2	1,48	-	-
	C2.3	0,32	-	-
	C2.4	1,40	-	-
	C2.5	2,45	-	1
Montnegre -	C2.6	0,21	-	-
Corredor	C2.7	1,85	-	2
	C2.8	0,65	-	-
	C2.9	6,38	-	1
	C2.10	1,05	-	1
	C2.11	1,0	-	1
	C2.12	2,5	1+1	2
Montseny	C2.13	6,9	1+1	3
	C3.1	2,71	-	1
Montnegre -	C3.2	1,51	-	-
Corredor	C3.3	2,02	1+1	1
	C3.4	4,53	-	2
Bellmunt-	C3.5	8,46	-	3
Collsacabra	C3.6	23,84	1+1	6
Montseny	C3.7	7,50	1+1	3
Ripollès	C3.8	8,30	1+1	3
	C4.1	5,05	-	2
Montnegre -	C4.2	5,90	-	1
Corredor	C4.3	5,80	1+1	2
	C4.4	4,35	-	1
Bellmunt- Collsacabra	C4.5	16,09	1+1	6
Montseny	C4.6	6,20	1+1	3
Ripollès	C4.7	3,30	-	3

Technical evaluation of the silviculture applied and lessons learnt

<u>Marking</u>

- Marking is essential (future crop trees and/or competitors)
- Define and transfer simple technical prescriptions, progressively and only to foreman
- They must be agreed with the technical staff and owners
- Describe instructions compared to baseline silviculture
- If possible, a full marking is done
- In poorly accessible sites: demonstrative marking to train forest workers; further monitoring required (BA control)

Technical evaluation of the silviculture applied and lessons learnt

Future crop trees promotion

- Define characteristics of future crop trees
- Species identification (leafless trees)
- Crown release, keeping a service (subdominant) stratum

Particularities at species level

- Chestnut, oak: prudent relesase
- Oak: consider orientation (aspect)

Technical evaluation of the silviculture applied and lessons learnt

Shrub clearing

- Insist on discontinuous + selectiveness
- Insist in the application of coppice with standards also in shrubs
- In areas with low tree density: apply clearing before tree cutting
- First days: intense supervision

Technical evaluation of the silviculture applied and lessons learnt

Overall evaluation of MixForChange silviculture vs. baseline silviculture

- Higher investment in technical staff (especially: training), marking, clearing
- Lower investment in all other works (felling, skidding...)
- Economic balance: similar (lower income & lower costs)
- Better outcomes in terms of adaptation, conservation, future stand value

CONCLUSIONS

- → MixForChange silviculture: adaptive to CC + high conservation outcomes + increased economic potential without increasing management costs
- → This silviculture is complex to define, transfer and apply (species ecology, forests dynamics, silvicultural treatments, forest operations...)
- → Avoid fast changes; take the stand progressively toward more resilient structures
- → Tree marking + capacity building are essential (detailed interventions)
- \rightarrow Interventions should focus on releasing future crop trees (crown level!)

LIFE MixForChange (LIFE15 CCA/ES/000060) is funded by the LIFE Programme

http://www.mixforchange.eu/

Generalitat de Catalunya Departament d'Agricultura, Ramaderia, Pesca i Alimentació

